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Figure: Dow Jones: average growth.
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Figure: First differences of Dow Jones: stationary.
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Dow Jones is a stock index that allows to evaluate the overall
performance of stock markets.
It is approximately computed as an average of the 30 most capitalized
stocks (although does not account for the different weights of those
stocks.
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Figure: S&P 500 returns from 1990 to 1999. High volatility.
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Standard and Poor’s is a financial company that discloses some
indexes about the US financial market.
The S&P 500 is computed as a weighted arithmetic mean of 500
stocks of US high capitalized companies.
Returns are computed: log pt

pt−1
= log pt − log pt−1.
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Figure: Close prices for ITALGAS between July 1985 and June 1989. Series and
difference series.
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Stationary property

Stationarity represents a link among past, present and future.
Intuitively, a process {Xt, t = 0, 1 . . .} is said to be stationary if it
possesses statistical properties similar to the shifted process
{Xt+h, t = 0, 1 . . .}, where h is a positive or negative integer.
Def. A process is said to be strong stationary if the joint distribution
(Xt1 , . . . ,Xtk) is the same of the joint distribution

(
Xt1+h , . . . ,Xtk+h

)
for any h, k > 0.
This property represents a kind of homogeneity on the probabilistic
structure of the process with respect to time.
Example. We have a strong stationary process if (X1985,X1986,X1987)
has the same distribution as (X1990,X1991,X1992), that is
(X1985+5,X1986+5,X1987+5).
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However, such property is very difficult to be verified !
We prefer to require a lighter concept of homogeneity based on the
second moment.
A process Xt is said to be weakly stationary if:

1 E (Xt) = µ, the expected value is constant ∀t,
2 Var (Xt) : γ(0) = σ2 < ∞, the variance is constant ∀t,
3 Cov (Xt,Xt+h) = γ(h), the variance at lag h only depends on the

distance h, not on t, ∀t.
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An immediate implication is the fact that the correlation structure of
the variables does not change in time with respect to the same lag h.
Strong stationary =⇒ Weak stationary. Viceversa not true.
The first two moments do not identify a process except for the
Gaussian case. Therefore, for a Gaussian process strong and weak
stationary property coincide.
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Autocorrelation function

The autocovariance function of Xt is defined as

γ(h) = Cov(Xt+h,Xt), h ∈ R.

The autocorrelation function (ACF) of Xt is defined as

ρ(h) = γ(h)
γ(0) = Corr(Xt+h,Xt), h ∈ R.
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The ACF measures the correlation (linear dependence) between values
of the process at different lags h, and it indicates the amplitude and
length of the memory of the process.
γ(h) = γ(−h) and ρ(h) = ρ(−h), i.e., the autocovariance function
and ACF are even functions (symmetric respect to zero) as the
distance in time between Xt e Xt−h is the same as Xt e Xt+h. For this
reason the ACF is usually plotted for positive lags.
Since ρ(h) is a correlation, it follows −1 < ρ(h) < 1.
Intuition suggests that for a stationary process ρ(h) → 0 (fast or
slow) as h increases, otherwise the process would explode.
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Figure: Examples of ACF.
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Partial autocorrelation function

Besides the ACF a quantity of interest is the correlation between Xt e
Xt+h netting for the effect of intermediate variables
Xt+1,Xt+2, . . .Xt+h−1. This is the partial autocorrelation function
(PACF).
The PACF measures the autocorrelation between Xt e Xt+h after
removing their linear dependence with the other intermediate variables
(recall the partial correlation coefficient in multiple regression).
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It takes to compute

ϕhh = Corr(Xt,Xt+h|Xt+1,Xt+2, . . .Xt+h−1).

PACF can be derived as follows: consider a regression model where
the dependent variable Xt+h is regressed against
Xt+h−1,Xt+h−2, . . .Xt, i.e.,

Xt+h = ϕh1Xt+h−1 + ϕh2Xt+h−2 + . . .+ ϕhhXt + et+h,

where ϕhj represents the parameter of the regression of Xt+h with
respect to the variable Xt+h−j, and et+h is the shock uncorrelated
with Xt+h−j for j ≥ 1.
Note that we are considering a zero mean process.
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Multiplying both sides by Xt+h−j and taking the expected values, we
get:

γ(j) = ϕh1γ(j − 1) + ϕh2γ(j − 2) + . . .+ ϕhhγ(j − h)

thus,

ρ(j) = ϕh1ρ(j − 1) + ϕh2ρ(j − 2) + . . .+ ϕhhρ(j − h).

For j = 1, 2, . . . , h we obtain the following system of equations, known
as Yule-Walker equations:

ρ(1) = ϕh1ρ(0) + ϕh2ρ(1) + . . .+ ϕhhρ(h − 1)
ρ(2) = ϕh1ρ(1) + ϕh2ρ(0) + . . .+ ϕhhρ(h − 2)

(1)

ρ(h) = ϕh1ρ(h − 1) + ϕh2ρ(h − 2) + . . .+ ϕhhρ(0)
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It can be shown that, after some computations for h = 1, 2, . . . we
get:

ϕ11 = ρ(1)

ϕ22 =

1 ρ(1)
ρ(1) ρ(2)
1 ρ(1)
ρ(1) 1
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ϕ33 =

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) ρ(3)
1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

. . .
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ϕhh =

1 ρ(1) ρ(2) . . . ρ(h − 2) ρ(1)
ρ(1) 1 ρ(1) . . . ρ(h − 3) ρ(2)
... ... ... ... ... ...
ρ(h − 1) ρ(h − 2) ρ(h − 3) . . . ρ(1) ρ(h)
1 ρ(1) ρ(2) . . . ρ(h − 2) ρ(1)
ρ(1) 1 ρ(1) . . . ρ(h − 3) ρ(2)
... ... ... ... ... ...
ρ(h − 1) ρ(h − 2) ρ(h − 3) . . . ρ(1) 1

ACF and PACF are often unknown. We will show how to estimate
them. Clearly, to estimate ϕ̂hh it takes to estimate ρ̂(h).
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Figure: Examples of PACF.
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Figure: Examples of PACF.
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Given a stationary process it is possible to compute a unique ACF and
PACF.
We can ask the following: given an ACF is the process that possess
that ACF unique ?
The answer is negative, in general because the ACF does not fully
characterize a process. It can be shown that there may exists more
proceses with same ACF
The answer is positive, instead, if besides the stationarity we require
the invertibility conditions.
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Invertibility relates to the possibility of expressing the process Xt as a
function of past random variables.
More formally, a process {Xt} is said to be invertibile if it exists a
linear function h(·) and a white noise {ϵt}, such that for each t:

Xt = h(Xt−1,Xt−2, · · · ) + ϵt.

We will discuss the role of ACF and PACF in finding the model or the
underlying process for the observed time series.
Depending on the specified model we will have different ACF and
PACF.
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Example 1. White Noise. The easiest stationary process is the White
Noise: {Xt} is a sequence of uncorrelated random variables,
Cov(Xt,Xt+h) = 0 ∀h ̸= 0, zero mean a variance equal to σ2.
Therefore,

ρ(h) = 1 per h = 0

ρ(h) = 0 per h ̸= 0.

Note that the PACF and ACF coincide since the components are
serially uncorrelated.
We write Xt ∼ WN(0, σ2).
WN is a benchmark to assess if the bserved series shows
autocorrelation. That is, if a series is autocorelated we can compare it
to the ACF of a White Noise.
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Figure: Representation of a WN series and its ACF.
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Note that Gaussian assumption is not required for a process to be
WN.
When adding the Gaussian hypothesis we end up with a sequence of
random variables

Xt
i.i.d∼ N(0, σ2)
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