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Figure: First differences of Dow Jones: stationary.
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@ Dow Jones is a stock index that allows to evaluate the overall
performance of stock markets.

@ It is approximately computed as an average of the 30 most capitalized
stocks (although does not account for the different weights of those

stocks.
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S&P 500 returns from 1990 to 1999. High volatility.
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@ Standard and Poor’s is a financial company that discloses some
indexes about the US financial market.

@ The S&P 500 is computed as a weighted arithmetic mean of 500
stocks of US high capitalized companies.

@ Returns are computed: log % = log pt — log pr_1.
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Figure: Close prices for ITALGAS between July 1985 and June 1989. Series and

difference series.
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Stationary property

@ Stationarity represents a link among past, present and future.

@ Intuitively, a process {X;, t=10,1...} is said to be stationary if it
possesses statistical properties similar to the shifted process
{Xtyn, t=10,1...}, where his a positive or negative integer.

@ Def. A process is said to be strong stationary if the joint distribution
(Xeys -+, Xg,) is the same of the joint distribution (thn e ’th+h)
for any h, k> 0.

@ This property represents a kind of homogeneity on the probabilistic
structure of the process with respect to time.

@ Example. We have a strong stationary process if (X1985, X1986, X1987)
has the same distribution as (Xlggo,Xlggl,Xlggz), that is
(X1985+5, X1986-+5, X1987+5)-
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@ However, such property is very difficult to be verified !

@ We prefer to require a lighter concept of homogeneity based on the
second moment.

@ A process X; is said to be weakly stationary if:

Q@ E (X;) = p, the expected value is constant V¢,
@ Var(X;) : v(0) = 02 < oo, the variance is constant Vt,

@ Cov (X, Xern) = y(h), the variance at lag h only depends on the
distance h, not on t, Vt.
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@ An immediate implication is the fact that the correlation structure of
the variables does not change in time with respect to the same lag h.

@ Strong stationary = Weak stationary. Viceversa not true.

@ The first two moments do not identify a process except for the
Gaussian case. Therefore, for a Gaussian process strong and weak
stationary property coincide.
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Autocorrelation function

@ The autocovariance function of X; is defined as
")/(h) = COV(Xt+h, Xt), heR.

@ The autocorrelation function (ACF) of X; is defined as

p(h) = ’ZES; = Corr(Xeyny Xt), heR.
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The ACF measures the correlation (linear dependence) between values
of the process at different lags h, and it indicates the amplitude and
length of the memory of the process.

~v(h) = v(—h) and p(h) = p(—h), i.e., the autocovariance function
and ACF are even functions (symmetric respect to zero) as the
distance in time between X; e X;_j, is the same as X; e X¢p. For this
reason the ACF is usually plotted for positive lags.

Since p(h) is a correlation, it follows —1 < p(h) < 1.

Intuition suggests that for a stationary process p(h) — 0 (fast or
slow) as h increases, otherwise the process would explode.
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Figure: Examples
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Partial autocorrelation function

@ Besides the ACF a quantity of interest is the correlation between X; e
Xi+p netting for the effect of intermediate variables
Xiex1, Xe42, ... Xepn—1. This is the partial autocorrelation function
(PACF).

@ The PACF measures the autocorrelation between X; e X;.p after
removing their linear dependence with the other intermediate variables
(recall the partial correlation coefficient in multiple regression).
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It takes to compute

Ohh = CO”’(Xt’ Xeh| X1, Xeg2, - - Xt+h—1)-

PACF can be derived as follows: consider a regression model where
the dependent variable X;p is regressed against
Xtth—1, Xevh—2,- - Xt, €.,

Xerh = OnXern—1+ O Xegn—2 + ... + OnnXe + €r4p,

where ¢p,; represents the parameter of the regression of X;,, with
respect to the variable Xy ,_j, and e.y is the shock uncorrelated
with X p—j for j > 1.

Note that we are considering a zero mean process.
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@ Multiplying both sides by X;,,_; and taking the expected values, we
get:

YU) = oy — 1) + dnav(—2) + ... + dpny( — h)

thus,

pU) = ¢mpl—1) + dn2p(—2) + ... + Gpnp(j — h).

@ For j=1,2,..., h we obtain the following system of equations, known
as Yule-Walker equations:

p(1) = ¢n1p(0) + ¢pap(l) + ... + danp(h — 1)
p(2) = dmp(1l) + Gr2p(0) + ... + dpap(h — 2)

p(h) = ¢pip(h — 1) + drap(h — 2) + ... + dnnp(0)
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@ It can be shown that, after some computations for h=1,2,... we
get:

¢11 = p(1)
L
O

17/26



NN AN S
AN —= O AN —~
SN N N | N N
QAL QA Q| -
—~ —_~ |~ —~
i i i i
N—r SN | N N—r
QUL QU LA
—~~ —~~
— N — N
N N S N
— QA QA+ QL X

18/26



1 p(1) p(2) o ph—2) p(1)
p(1) 1 p(1) . plh=3) p(2)
Sy = b(h— 1) k(h -2) ;(h— 3) N })(1) 'p(h)
R (1) p(2) . p(h=2) p(1)
p(1) 1 p(1) . p(h=3) p(2)

ﬁ(h— 1) })(h—2) })(h—3) . })(1) 1

@ ACF and PACF are often unknown. We will show how to estimate
them. Clearly, to estimate ¢p, it takes to estimate p(h).
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Given a stationary process it is possible to compute a unique ACF and
PACF.

We can ask the following: given an ACF is the process that possess
that ACF unique ?

The answer is negative, in general because the ACF does not fully
characterize a process. It can be shown that there may exists more
proceses with same ACF

The answer is positive, instead, if besides the stationarity we require
the invertibility conditions.
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@ Invertibility relates to the possibility of expressing the process X; as a
function of past random variables.

@ More formally, a process {X:} is said to be invertibile if it exists a
linear function h(-) and a white noise {¢;}, such that for each t:

Xi = h(Xt—h Xt—2,- - ) + €.

@ We will discuss the role of ACF and PACF in finding the model or the
underlying process for the observed time series.

@ Depending on the specified model we will have different ACF and
PACF.
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Example 1. White Noise. The easiest stationary process is the White
Noise: {X:} is a sequence of uncorrelated random variables,
Cov(Xt, Xern) = 0 Vh # 0, zero mean a variance equal to o2

Therefore,
p(h)=1 per h=0
p(h) =0 per h#0.

Note that the PACF and ACF coincide since the components are
serially uncorrelated.

We write X; ~ WN(0, 02).

WN is a benchmark to assess if the bserved series shows

autocorrelation. That is, if a series is autocorelated we can compare it
to the ACF of a White Noise.
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Representation of a WN series and its ACF.
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@ Note that Gaussian assumption is not required for a process to be
WN.

@ When adding the Gaussian hypothesis we end up with a sequence of
random variables N
X: " N0, 0?)
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